Anthro. 101: Human Biological Evolution

Lecture 5: Microevolution

Prof. Kenneth Feldmeier

Hidden variation allows species change

New combinations extends the range of variation = new material for NS to act upon

Lets Check What Causes Evolution: The Five Fingers

 http://ed.ted.com/lessons/five-fingers-ofevolution#review

Some forces redistribute existing variation

- Natural selection
- Gene flow
- Genetic drift
 - Founder Effect
- Sexual selection
- Nonrandom Mating

Gene Flow

- Exchange of genes between populations
- Can be one-way or two-way
- Not *exactly* the same as migration
 - Amish: Migration without gene flow
 - Vietnam War: Gene flow without migration
- Maintains variation within populations
- Reduces variation between populations

Genetic Drift

- In small populations, random processes affect variation
- Frequencies in small samples show small random differences from large source population
 - 5 red:5 black
 - 6 red:4 black
 - 3 red:7 black
 - 7 red:3 black

Population Bottlenecking

- Population crash
- Reduces genetic variability

Founder's Effect

- After a Population Bottleneck
- Reduced genetic variability affects the remaining population
 - Color blindness on Pingelap
 - Prophyria in the British Royal Family & South Africans
 - Ellis van-Creveld syndrome among the Amish

Evolution is the change in the genetic composition of a population over time

- Natural selection acts on phenotypes (genotypes affected)
- Next generation has different traits (and genes) that are common
- When allele frequencies change from one generation to the next, evolution is occurring
- Equilibrium = no change

Population Genetics allows us to track the changes in allele frequencies in a population

- Understand how traits in a population can change over time = Evolution
- Demonstrate how alleles stay hidden in the genome & available for natural selection to act upon

Questions??

- List some of the forces that redistribute variation
- Tell me about a population bottleneck
- How does this influence a founders effect?
- Is population genetics important? Why?

Sickle Cell

https://www.youtube.com/watch?
 v=1fN7rOwDyMQ

Let's follow a Mendelian trait...

- Sickle-cell anemia
- Two alleles
 - ◆ A = normal hemoglobin
 - S = sickling hemoglobin
- Three genotypes
 - AA normal blood cells
 - SS sickled blood cells
 - AS defense against malaria

Selection for AS genotype (and S allele)

- AS people have an advantage
- S allele favored as part of the heterozygotes despite SS disease & death (before reproduction)

Natural selection is not guaranteed to produce "perfect" adaptations

NS can only act on existing traits

Natural selection does not have "foresight"

Traits arise via mutation, chance

NS limited by Pleiotropy

- In Darwin's finches,
 beak traits are correlated
 - Deeper & wider
 - Shallow & narrow
- one gene affects multiple traits = correlated traits

NS limited by Disequilibrium

• If environment changes, population is not perfectly suited

In Humans!!

- Some nutrients (fat, salt, sugar) rare in the past
- Selection favored strong preferences
- No longer rare, but still delicious!

NS limited by the Laws of Physics & Chemistry

- Some designs may be physically impossible
- Why can't elephants fly?
- Why can't male mammals lactate?

