Anthro 101: Human Biological Evolution

Lecture 13: Early Hominins

Prof. Kenneth Feldmeier

Biological Anthropology

• Hominoid = Apes

- Humans, Gorillas, Chimpanzees, Orangutans, Gibbons and Siamangs
- Hominin = Bipedal Apes
 - Australopithecines, Paranthropines, genus *Homo*, including *Homo sapiens* (modern humans)
- Homo = any species in the genus Homo
 - Represent a different grade than earlier species, mors similar to modern humans

Australopithecine

The hominin lineage diverged from hominoid ancestors approximately 7 million years ago

Check This Out

• <u>http://humanorigins.si.edu/evidence/</u> <u>human-evolution-timeline-interactive</u>

The very early hominins represent an adaptive shift

1. Natural selection favored ability to move around bipedally

- bipedal, but lived in forest or woods
- probably spent a lot of time in trees
- Bipedality evolved when hominins diverged (7 6 mya)
- Well adapted

2. Brain size & intelligence very ape-like

- Big brains evolved much later
- Size shifts often just tracking changes in body size

3. Males & females sexually dimorphic

• Multi-male multi-female type mating system is likely

Why don't we fall over?

- Falling is opposed by abductor muscles
- Abductors tighten each step, hold body upright
- Abductors attach the <u>ilium</u> on top of <u>pelvis</u> to the <u>femur</u>
- Wider, thicker ilium and longer neck of femur increase surface area for muscle attachment

(b) With abductors

Changes in the pelvis

Chimpanzee pelvis

- Long and narrow
- Thin ilium
- Powerful hamstring and quadruceps
- Organs hang below

Human pelvis is a bowl

- Centers weight over one foot while walking
- Supports internal organs
- Short and broad ilium
- Abductor muscles attach to wide surface of ilium

(c) Chimpanzee

Other Skeletal changes associated with bipedal walking...

- S-shaped spine
- Centered foramen
 magnum
- Femur angled in to close knees
- Arched, rigid foot and big toe in-line with other toes

What is (are) the adaptive advantage(s) of bipedality?

- 1. Hands free to carry things
- 2. Efficient way to travel
- 3. Efficient for foraging from small trees
- 4. Keep cool in open savannah

Benefits of bipedality: Efficient travel

- more efficient than knucklewalking over long distances
- Colder, drier world, receding forest areas
 - Cover open ground to reach foraging sites
 - Maintain larger groups
 - Safety from predators
 - Better competition vs. other groups

Benefits of bipedality: Foraging Efficiency

Foraging efficiency ==> Bipedal standing while foraging

- Better able to reach of ripe fruits
- Shuffle from one branch to another
- Chimps, baboons already do this

Early hominins show a mixture of adaptations

- Bipedal walkers
- Upper bodies like apes
 - Spent time in trees as well

Benefits of bipedality: Keeping cool

- Savanna hot during day = best time to avoid predators
- Less surface area exposed to sun
- Sweat allows cooling + wind increases cooling
 - Cooler higher above ground
 - More wind higher above ground
- Hair loss improves effects of wind cooling, need less water

Archaic hominins

Ardipithecus

- Found in Ethiopia
- First specimens found in early 1990s, major findings released in October 2009
- Two species:
 - Ardipithecus kadabba: 5.6 mya
 - Ardipithecus ramidus: 4.4 mya ("Ardi")
- Habitat = Closed canopy forest

 <u>http://www.discovery.com/tv-shows/</u> <u>other-shows/videos/ardipithecus-</u> <u>discovering-ardi-how-ardi-walked.htm</u>

A. ramidus is a mix of ancestral and derived traits

Ancestral features

- Chimp-sized brain
- Subnasal prognathism

Derived features

- Omnivorous teeth
- Little canine dimorphism
- Flexibly bipedal & quadrupedal
 - Forward position of foramen magnum

A. ramidus is a mix of ancestral and derived traits

Ancestral features

- Chimp-sized brain
- Prognathic face

Derived features

- Omnivorous teeth
- Little canine dimorphism
- Flexibly bipedal & quadrupedal
 - Forward position of foramen magnum
 - Opposable big toe

Questions

- What is a Hominin?
- Why is important that our ancestors became bipedal
- What could have caused this change?
- Is bipedality an adaptation?
 - explain

The Australopithecines

Primitive spelling bees

4 - 2 MYA bipedal apes ventured out of the forest and the hominin community diversified

• Australopithecus

- 4 6 species known
- ape-like prognathic face
- adapted to generalized diet
- fast development

• Paranthropus

- 3 species known
- ape-like prognathic face
- adapted to hard food diet
- 4-7 species coexisted

Australopithecines ranged across Africa

<u>https://www.youtube.com/watch?</u>
 <u>v=gN_uIMJMgNU</u>

The Australopithecines shared certain key adaptations

- Bipedal
 - Arched foot
 - In-line big toe
 - Short & wide illium blade
- Still adept in trees
 - Curved fingers & toes
 - Short thumb, thin fingers
- Small bodies
- Teeth, jaws, skull intermediate between apes and later hominins
- Ape-like development patterns
- Ape-sized brains
- Pronounced sexual dimorphism
- Woodland/scrub/grassland habitat

Australopithecus afarensis teeth & jaws were intermediate between chimps and later hominins

- Molars nearly parallel
- Front teeth & palate rounding more
- Larger molars
- Large incisors
- Canines project & conical
- Small diastema
- Premolar slight 2nd cusp
- *A. africanus* teeth no longer intermediate
- Bigger, but otherwise like *Homo*

Australopithecines grew up quickly & were sexually dimorphic

• Australopithecines grew up more quickly than modern humans do

Males: 4'8" to 5' and 90-110 lbs Females: 3'6" to 3'11" and 66-70 lbs

Males weigh 30-50% more than females

- \Rightarrow Not pair-bonded
- ⇒ Multi-male, multi-female

Australopithecus afarensis vs. africanus

Paranthropus

- *Paranthropus aethiopicus* 2.4 mya, East Africa
- *Paranthropus bosei* 2.2 – 1.0 mya, East Africa
- *Paranthropus robustus* 2.0 1.0 mya, South Africa

The Paranthropines: bipedal apes with very big teeth, particularly molars

Formerly called "robust" Australopithecines

A. africanus

Jaw and skull reorganized for heavy chewing

The *Paranthropus* jaw required massive musculature

P. boisei

P. aethiopicus

H. sapiens

Phylogenetic conclusions to remember

- Hominins originated in Africa during the late Miocene epoch = 6 to 7 mya
- One or more of the Miocene species evolved into the Australopithecine and those into Paranthropine species
 - Two genera included many diverse species
- *Australopithecus* (mostly) went extinct about 2.5 mya
- *Paranthropus* & (*Homo*) *rudolfensis* & *habilis* appeared about 2.5 mya (and *A. sediba* at 2mya!)
- Likely one of the *Australopithecus* genus gave rise to *Homo*

Ancestor to the *Homo* lineage at 2.5 mya was:

- Bipedal, but still time in trees, small body size
- Teeth adapted for generalized diet (NOT *Paranthropus*)
- Sexually dimorphic, small brains
- Living in mixed woodland, grassland habitats
- 2.5 mya Africa further cooling & drying trend
 - Appearance of the first stone tools!

JH Matternes, AMNH

Homo habilis & rudolfensis trend to bigger brains and appear about 2.5 mya

- Brain size
 - habilis = 600 cc
 - Rudolfensis = 750 cc
 - Australopithecus & Paranthropus = 400 to 530 cc
- Skull more rounded
- Less prognathic, smaller face
- Smaller teeth, parabolic dental arcade, thinner enamel

What kinds of selective pressures did they face 2.5 mya?

- Spending more time on on ground, less time in trees
 - More vulnerable to terrestrial predators

- Probably still slept in trees
- Might have formed large, multi-male groups

What kind of selective pressures did they face 2.5 mya

- Seasonal environment makes finding food harder
 - less plant food in the dry season
 - alternate food sources needed when dry

How did early hominins cope with seasonality?

- Australopithecines & Homo
 - smaller teeth may have eaten more meat
 - Carbon analysis of teeth supports this
- Paranthropus
 - huge molars, heavy jaws, and massive chewing muscles
 - may have shifted to tough, dry plant materials
 - May also have eaten harder nuts & tubers
 - Possibly also ate meat
- Flexible diet in a fluctuating world

Hominin Transition: From meat to tools to culture

- Increasing reliance on meat characterizes the transition to genus *Homo*
 - May have led to changes in human behavior and social structure
- These changes <u>begin</u> to appear about 2.5 mya with the appearance of stone tools

All of the early hominins probably made tools

• Chimps make and use tools

- twigs to probe termite mounds
- leaves to sponge up water
- rocks to hammer open nuts
- sticks as weapons

 \Rightarrow little trace in archaeological record

2.5 mya Hominins make stone tools: The Oldowan Toolkit

- Cores are round stones, with flakes knocked off to produce an edge
- used **flakes** as cutting tools
 - Remove skin
 - Butcher animals quickly
- Used **cores** as hammers & choppers
 - knock off the flakes
 - Crack open bones for marrow

Oldowan tools are simple, but took skill

- Piece together pile of flakes to the original core that they were struck from
- Toolmakers chipped as many as 30 flakes from 1 core
- Various kinds of stone
- No apparent design in mind when making

Next slide NSFW

Modern experiments suggest flakes were good for butchering game

In Olduvai Gorge we find butchery sites

- Large piles of tools and animal bones
 - some marked by tools, some by carnivore teeth, some both
- Hominins carried carcasses to butchery sites
 - Dismembered carcass there
 - Carry good bits away for more intensive processing
 - Scavengers waited for remains or competed for carcass
- Sites for raw stone material for tools
 - Made tools in these locations

Who made the first stone tools? (probably all of them!)

- A. garhi is possible candidate
 - Present at right time and place
 - Bones with stone tool marks found nearby
- But, many species present 2.5 mya
 - *A. sediba* (more recent)
 - Paranthropine species precision grip
 - *H. habilis & rudolfensis*
 - (habilis was the presumptive tool maker for long time)

Olduwan Toolmakers at the cusp of another adaptive shift

- Greater reliance on meat & tools
 - Changes in social life
 - Changes in brain
 - Changes in lifespan
- Hominin becoming more like us

