Anthro 101: Human Biological Evolution

Lecture 12: The Fossil Record

Prof. Kenneth Feldmeier

The Fossil Record

- The Geological Time Scale
- Dating Techniques
- The Fossil Record
- Early Primate Ancestors

Our goal is to trace our lineage back in time

- unbroken chain of ancestors back in time to
 - a creature much like a modern chimpanzee
 - a creature like an Old World monkey
 - a creature like one of the prosimians
 - a creature like a tree shrew

How do you define an extinct species?

- Can't see if fossil organisms reproduced
- Track phenotypic traits skeletons
- **Paleospecies** a group of similar fossils that vary from each other within the range of variation observed in a closely related living species
- Can be tricky to determine similarity
 - Age, sex
 - Intraspecific variation
 - Variation over time & location
 - Limited number of fossils to compare
- Typological viewpoint vs. Populationist viewpoint

Fossil evidence helps to trace our ancestry

- Fossils: any remains, impressions or traces of plants or animals from a previous geological age
 - Bones replaced by minerals

- **Paleoanthropology**: the study of fossil hominin species & related
 - Understand early primate-like & human-like creatures
 - Figure out the lives they led

The Fossil Record

- Knowing dates is only part of the story
- We are interested in evolutionary patterns
 - phylogenetic relationships
- Our ability to infer these is imperfect
- Still lot of interesting questions
 - Selective pressures
 - Adaptation

Finding fossils is a playing the lottery

- Fossils are very, very old
- Africa and Asia are very, very large
- Ancient habitats & poor preservation
- Difficult conditions in modern habitats
- Surface materials easily destroyed
- Much material is buried

• Imagine the "real" diversity of extinct species

- Start with the "real" diversity of extinct species
- Suppose known fossils are randomly drawn from extinct species
 - Only about 3% of fossil species are likely ever found

- Start with the "real" diversity of extinct species
- Suppose known fossils are randomly drawn from extinct species
 - Only about 3% of fossil species are likely ever found
- Draw phylogenetic tree from *known* fossils

- Start with the "real" diversity of extinct species
- Suppose known fossils are randomly drawn from extinct species
 - Only about 3% of fossil species are likely ever found
- Draw phylogenetic tree from *known* fossils
- Falsely simplifies actual phylogenetic relationships

Missing data can also mislead us about the date of origin and the lifespan of a species

- Extinct species
 - Many individuals lived
 - Very few become fossils
- Small chance of finding very earliest or very latest fossils
 - Under-estimate both age and lifespan of species

Determining the age of fossils pg 245 - 254

Relative Dating Techniques

- Stratigraphy
- Faunal Correlation
- Fluorine Dating
- Paleomagnetism

Chronometric Dating Techniques

- Radiometric Techniques
 - Carbon-14
 - Potassium-Argon

Radiometric Dating techniques

- Assign an absolute date to a layer of rock and fossils in it
- Radioactive isotopes are unstable
 - Isotope = variant of an element
- Decay into stable isotope
- Takes place at constant rate
- Measure decay rate by <u>half-life</u>
 - Amount of time it takes for half of remaining amount to decay
- Measure ratio of radioactive isotope to its decayed form = age

Radiometric Dating Techniques

potassium/argon (K/Ar) dating:

- Volcanic eruptions releases Ar gas
- Rock cools
- ⁴⁰K decays into ⁴⁰Ar
- ⁴⁰Ar is trapped in the rock
- half-life of 1.3 billon yrs
- ratio of K/Ar tells you how long ago the <u>volcanic rock</u> was formed
 - age of any fossils within that rock

Carbon-14

- Animals eat carbon 14 during lifetime
- Carbon 14 decays to carbon 12 when an animal dies
- Measure the ratio of carbon 14 to carbon 12 in <u>bones or</u> <u>organic material</u>
- Best for fossils younger than 40,000

Reminders

- Exam tomorrow
- 6 CLASSES LEFT
 - HOLY SH*%
 - Last quiz Monday
 - Final project handout today
 - Homework tonight watch video and answer questions
 - Lets finish strong!!!

Geologic Time Scale

- Measures history of Earth 4.5 billion years
- Organizes history of Earth into various units
- Eon > Era > Period > Epoch
- Important to understand the scale and pace of evolution

Phanerozoic Eon

Animal life diversifies starting in the Paleozoic

Recognizable fauna of the Mesozoic

Starting in the Mesozoic the earth rearranged itself (200 mya – present)

The Mesozoic: Triassic (225 mya)

- Pangea was a single continent
- Dinosaurs & small mammals evolve
- Pangea HUGE land mass
 - Hot, arid, seasonal, some coastal areas more humid

Transition from Triassic to Jurassic

The Mesozoic: Jurassic (190 mya)

- 200 mya Pangea starts breaking up
 - Laurasia & Gondawana
- Oceans are barriers to gene flow = new species form
- World gets warmer, climate stable when continent splits
- Dinosaurs and mammals evolve in this warmer world

The Mesozoic: Cretaceous (136 mya)

- Rise of **angiosperms** = fruits bearing trees = new foods
- Placental mammals evolve
- Adaptive Radiation

Angiosperms

The Mesozoic: Cretaceous (136 mya)

Life's great until mass extinction of dinosaurs 65 mya

Continents & Climate @ 94 mya

Primates finally start to enter the scene, 65 mya

Continental drift is important part of human history because it changed global climates

Temperatures have declined steeply from Eocene to present Huge fluctuations in last 5 my

 $25C = 77^{\circ} F$ $10C = 50^{\circ} F$

The Cenozoic: Paleocene

- Paleocene wet & warm
 - Radiation of mammal taxa with some primate-like traits
 - Plesiadapiforms not quite yet primates thrive
 - Europe & North America
 - Primate-like molars
 - Ankles for climbing trees

The Cenozoic: Eocene

- Eocene 🛧 wetter & warmer
 - Tropical forests
 - SA isolated from NA & Europe = new species
 - First true primates
 - Prosimian-like traits
 - Two families in North America & Europe
 - Adapidae
 - Lemur-like prosimians
 - Omomyidae
 - Tarsier-like prosimians
- Mass extinction at end of Eocene
- First Anthropoids evolve

Smilodectes

The Cenozoic: Oligocene

- Oligocene getting colder & drier
 - more seasonal variation
 - Mostly modern continent positions
 - South America still separate
 - Cold water currents cooling earth
 - Africa & SA tropical forests remain
 - Tropics receding in other areas
 - Age of the Anthropoid (monkeys)
 - Parapithecidae (Apidium)
 - **Proliopithecidae** (*Aegypotopithecus*)
 - First platyrrhines in South America!
 - First Hominoids (apes) evolve

Aegypotopithecus

The Cenozoic: Miocene

- Miocene warm & moist at beginning
 - Got colder & drier
 - Forests retreating = open woodland habitat
 - Himalayas form = block warm \rightarrow cold air currents
 - Rift valley forms = rain shadow & dry savannah

The Cenozoic: Miocene

- Miocene warm & moist at beginning
 - Golden age of the Hominoids (apes) (early Miocene)
 - Great diversity of species
 - Fruit diet specialization
 - Some arboreal quadrupeds, some terrestrial quadrupeds, suspensory adaptations later
- Late Miocene getting drier & colder
 - Ape shift to knuckle-walking adaptations
 - Ape species retreat to remaining tropics
 - Mass extinction of apes at end of Miocene
 - First hominins evolved (late Miocene)

The distribution of primate species shifted during Miocene

• Monkeys are more r-selected than apes

- reproduce faster
- respond quickly to environmental changes

• apes didn't adapt to changes, stayed in tropical forest niches The Cenozoic: Age of the Hominins

- Pliocene begins frequent temperature fluctuations
 - Hominins diversify
 - Australopithecines & Paranthropines
- Pleistocene: extreme temperature fluctuations
 - Genus *Homo* appears 1.8 mya

Paleoanthropology is full of controversies:

We used to believe that the hominid lineage was fairly simple

As new species are unearthed, the phylogeny is less certain

Don't be too worried about the phylogenetic relationships

- Know a lot about how life has evolved
 - Recognize our understanding changes
 - Recognize that *improving* ≠ *disproving*
- More interested in the selective pressures & adaptations that occur along the way

Dirk brings his family tree to class.