Lab 3

Genetics the Basics

What is Genetics???

- Genetics is the scientific study of heredity.
- Heredity is what makes each species unique.

Review

- What is the process that makes somatic cells?
- What is the process that makes gametes?
- How many chromosomes in a somatic cell?
- How many in a gamete?

Review

- What is the process that makes somatic cells? mitosis
- What is the process that makes gametes? meiosis
- How many chromosomes in a somatic cell? 46
- How many in a gamete? 23

MENDELIAN GENETICS

- Genetics was unknown in Darwin's time
- Gregor Mendel bred pea plants and discovered the laws of inheritance
- He was successful partly because the traits he observed were simple traits, controlled by only one gene
- These are now called Mendelian traits
- Examples: black fur or white fur
- Right-handed or left-handed

MENDELIAL GENETICS

- Mendel's laws of inheritance:
- 1. Principle of Segregation: chromosomes inherited from mom and dad stay separated
- 2. Principle of Independent Assortment: you have an equal chance of inheriting each gene from each parent
https://www.youtube.com/watch?

v=CBezq1fFUEA

MENDELIAL GENETICS

- A gene is a segment of a chromosome's DNA that codes for specific functions or traits
- Genotype is the 2 alleles at a given locus. They are represented by letters. (ex. Aa or AA)
- If an individual inherits two alleles that code for the same form of a trait they are homozygous. If they have different forms they are heterozygous.

Homozygous vs. Heterozygous Genotypes

- Homozygous: the same allele at the same locus on both versions of the chromosome
- Heterozygous: a different allele at a particular locus on each chromosome

MENDELIAL GENETICS

- If an allele is always expressed when present, it is dominant. If it is masked, it is recessive. The only time recessive traits are expressed is if they are both recessive, or homozygous recessive.
- Homozygous dominant: 2 dominant forms (AA)
- Homozygous recessive: 2 recessive forms (aa)
- Heterozygous: one of each (Aa)
- Dominant does not mean better, healthier, or more common

Dominant \& recessive alleles

- 2 different alleles (heterozygous) = Aa
- Sometimes one of the alleles "overrides" the effects of other: this is called dominance $=A>a$
- A dominant allele overrides the effects of a recessive allele

Genotype / Phenotype

Phenotype: observable traits
The proteins that are built using the recipe.

Genotype: the alleles you carry
The recipe in your DNA.

Genes are segments on chromosomes

- Genes on chromosomes like beads on a string
- Each gene has a specific location = locus
- Gene loci
- There can be different versions of the same kind of gene: these are called alleles
- Homologous alleles work together to produce phenotype

Cell Division: Sharing the recipe

- DNA replicates before cell division - Two types of replication:
- Mitosis: makes a new somatic (body) cell
- Meiosis: makes gametes (sex cells, sperm and eggs) used in sexual reproduction

To make a new organism

Punnett Square Method

Genotypes

- 4 Aa

Phenotypes

- 4 Yellow

Punnett Square Method

SEX-LINKED TRAITS

- Sex-linked traits can be on X or Y chromosome
- Most are X-linked
- An example is red/green colorblindness. Most are males because this trait is transmitted by a recessive gene on the X chromosome
- A female has a better chance of getting a dominant X that will mask the gene, but males only have 1 X , so the trait will show
- Males are hemizygous

Lab 3

- Do exercise 3.1 (first, second and first 3 of the third box) Finish pages 32-33
- Exercise 3.2.5
- Exercise 3.4

