Comparative Osteology and Biological Classification

Classification

The field that specializes in establishing the rules of classification is called taxonomy.

- Organisms are classified on the basis of physical similarities.
 - Example: Dentition
- Example human classification
 - Kingdom: Animalia
 - Phyla: Chordata
 - Class: Mammalia

Evolutionary Relationships

Homologies

 Physical similarities based on descent from a common ancestor.

Analogies

 Physical similarities based on common function, with no assumed common evolutionary descent.

Ancestral and Modified Features

- Ancestral (primitive) features
 - Refers to features inherited by a group of organisms from a remote <u>ancestor</u>
- Derived features
 - Refers to features that are modified from the ancestral <u>environmental</u>

Evolutionary "Trees"

Phylogeny vs. Cladogram

- Example: Development of Passenger Vehicles
 - Automobiles
 - Population divergence
 - Cars vs. Trucks
 - Car "divergence"
 - Luxury vs. Sport

Primate Characteristics

- Fur (body hair)
- Long gestation followed by live birth
- Homeothermy
 - the ability to maintain a constant body temperature
- Increased brain size
 - Capacity for learning and behavioral flexibility.

EVIDENCE FROM TEETH AND SKULL

- Agnathans: first vertebrates, had no teeth or jaws
- Because we're mammals, we have heterodont teeth
- Form of teeth reflects function of animal's diet
- Teeth are most common fossil found and tell:
 - Age
 - Sex
 - Health
 - Mating systems
 - Behaviors
 - Evolutionary relationships
 - Diet

Physical Features of Primates

- Types of Teeth
 - Incisor, canine, premolar, molar
- Dental Arcade
 - V, U or Parabolic Shape
- Dental Formula
 - ¾ of mouth
 - Count what kinds of teeth
 - Upper Jaw
 Lower Jaw

a)	H	un	nan
2	1	2	З.
2	.1	2	3.

TOOTH FUNCTION

For mechanical digestion, there are 4 types:

- Puncture/piercing (insects)
 - Small, sharp, needle-like
- Shearing (leaves)
 - One side of molars is higher and sharper than the other
- Crushing/grinding (fruit/omnivore)
 - Rounded, worn-down cusps
- Tearing (meat)
 - Interlocking triangles

EVIDENCE FROM THE POSTCRANIAL SKELETON

- If we know bones, we can determine size, shape, muscle attachment, etc.
- Form is related to function through posture and locomotion
- Different features if arboreal or terrestrial
- Or if quadrupedal or bipedal

- Arboreal quadrupeds have mobile joints and fewer bony restrictions than terrestrial animals
 - Center of gravity is lower
 - Shorter limbs relative to trunk
 - Legs are longer
- Terrestrial quadrupeds have more stable joints and limited range of motion
 - Center of gravity is a bit higher
 - All limbs are similar length
 - "Table-top" back

Brachiators have very long, strong arms and long, hooked fingers

- Swing through trees
- Gibbons

• Knuckle-Walkers have longer arms and an angled back.

- They are able to walk on 2 legs some times
- Great apes

- Vertical Clinging and Leaping (VCL)
- Used by Prosimian/Strepsirrhines
- Cling to tree, twist and leap, and land on another tree

Bipeds have stable joints with ball-and socket joints for some motion

- Center of gravity is low, by pelvis
- Legs are very long
- Spine has double S curve

Locomotion

- Type of locomotion can be determined by the anatomy
 - Look at Humerus, Radius, Tibia, Femur

Example: The Intermembral Index

What is it? Forelimb/hindlimb x 100 What does it tell us?

Leapers

LAB

- Lab 9.1 #1, use page 223
- <u>Do lab 9.2 #1-3</u>
- use table 9.1 on page 226:
- It shows different bones (femur, humerus, scapula and ulna) and how they differ in arboreal and terrestrial animals
- <u>Self-test 9.1</u>
- One Step Further

Zoo Day Saturday.....

Don't forget to give me cash if you are rolling

Today, we dig into the different kinds of Primate and do Zoo prep

Primate Classification: Page 245-246 PROSIMIAN VS. ANTHROPOID STREPSIRHINE VS. HAPLORHINE

Primates

Haplorhini

Strepsirhines: Prosimians

- Smaller brain
- Emphasis on smell
- Unfused mandible

Strepsirhini

temporal fossa

Haplorhines: NW Monkey, OW Monkey, Apes, Humans

- a fused mandibular symphysis
- the region behind the orbit is enclosed within the skull (post orbital bar/closure)
- an increased emphasis on vision and reduced reliance on smell

Hominoids share the following derived characteristics

- lack of a tail
- broad palates and nasal regions

Primate Limbs

- Hands and feet possess grasping ability.
- Features of the hands and feet:
 - 5 digits on hand and feet
 - Opposable thumb
 - partially opposable great toe
 - Tactile pads enriched with sensory nerve fibers at the ends of digits

R. A. Mittermeier/Conservation International

Primate Limbs

-ynn Kilgor

Many monkeys are able to grasp objects with an opposable thumb, while others have very reduced thumbs.

Primate Limbs

Lynn Kilgore

Humans are capable of a "precision grip."

Lab Exercises

Zoo Project handout
 Lets Check it out
 I need to sign this before you go

Lab Primate handout
Lab 10.1, 10.2, 10.3
Self Test 10.1