Comparative Osteology and Biological Classification
The field that specializes in establishing the rules of classification is called **taxonomy**.

Organisms are classified on the basis of physical similarities.

Example: Dentition

Example - human classification

Kingdom: **Animalia**

Phyla: **Chordata**

Class: **Mammalia**
Homologies

Physical similarities based on descent from a common ancestor.
Analogies

- Physical similarities based on common function, with no assumed common evolutionary descent.
Ancestral (primitive) features
- Refers to features inherited by a group of organisms from a remote ancestor

Derived features
- Refers to features that are modified from the ancestral environmental
Evolutionary “Trees”

Phylogeny vs. Cladogram

Example: Development of Passenger Vehicles

- Automobiles
- Population divergence
- Cars vs. Trucks
- Car “divergence”
- Luxury vs. Sport
Fur (body hair)
Long gestation followed by live birth
Homeothermy
 the ability to maintain a constant body temperature
Increased brain size
 Capacity for learning and behavioral flexibility.
EVIDENCE FROM TEETH AND SKULL

- **Agnathans**: first vertebrates, had no teeth or jaws
- Because we’re mammals, we have **heterodont** teeth
- Form of teeth reflects function of animal’s diet
- Teeth are most common fossil found and tell:
 - Age
 - Sex
 - Health
 - Mating systems
 - Behaviors
 - Evolutionary relationships
 - Diet
Physical Features of Primates

- **Types of Teeth**
 - Incisor, canine, premolar, molar

- **Dental Arcade**
 - V, U or Parabolic Shape

- **Dental Formula**
 - ¼ of mouth
 - Count what kinds of teeth
 - **Upper Jaw**
 - **Lower Jaw**
TOOTH FUNCTION

For mechanical digestion, there are 4 types:

- **Puncture/piercing (insects)**
 - Small, sharp, needle-like

- **Shearing (leaves)**
 - One side of molars is higher and sharper than the other

- **Crushing/grinding (fruit/omnivore)**
 - Rounded, worn-down cusps

- **Tearing (meat)**
 - Interlocking triangles
EVIDENCE FROM THE POSTCRANIAL SKELETON

- If we know bones, we can determine size, shape, muscle attachment, etc.
- Form is related to function through posture and locomotion
- Different features if arboreal or terrestrial
- Or if quadrupedal or bipedal
Quadruped vs. Biped

Arboreal quadrupeds have mobile joints and fewer bony restrictions than terrestrial animals
- Center of gravity is lower
- Shorter limbs relative to trunk
- Legs are longer

Terrestrial quadrupeds have more stable joints and limited range of motion
- Center of gravity is a bit higher
- All limbs are similar length
- “Table-top” back
Quadruped vs. Biped

- **Brachiators** have very long, strong arms and long, hooked fingers
 - Swing through trees
 - Gibbons

- **Knuckle-Walkers** have longer arms and an angled back.
 - They are able to walk on 2 legs some times
 - Great apes
QUADRUPED VS. BIPED

Vertical Clinging and Leaping (VCL)
Used by Prosimian/Strepsirrhines
Cling to tree, twist and leap, and land on another tree
Bipeds have stable joints with ball-and-socket joints for some motion
- Center of gravity is low, by pelvis
- Legs are very long
- Spine has double S curve
Locomotion

Type of locomotion can be determined by the anatomy

Look at Humerus, Radius, Tibia, Femur
Example: The Intermembral Index

- What is it? Forelimb/hindlimb x 100
- What does it tell us?

<table>
<thead>
<tr>
<th>Index</th>
<th>Terrestrial Quadruped</th>
<th>Aboreal Quadruped</th>
<th>Clingers/Leapers</th>
<th>Brachiation</th>
<th>Biped</th>
</tr>
</thead>
<tbody>
<tr>
<td>~95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>~72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LAB

• Lab 9.1 #1, use page 223
• Do lab 9.2 #1-3
• use table 9.1 on page 226:
• It shows different bones (femur, humerus, scapula and ulna) and how they differ in arboreal and terrestrial animals
• Self-test 9.1
• One Step Further
Zoo Day Saturday......

- Don’t forget to give me cash if you are rolling

- Today, we dig into the different kinds of Primate and do Zoo prep
Primate Classification: Page 245-246

- PROSIMIAN VS. ANTHROPOPOID
- STREPSIRHINE VS. HAPLORHINE
Strepsirhines: Prosimians

- Smaller brain
- Emphasis on smell
- Unfused mandible
Haplorhines: *NW Monkey, OW Monkey, Apes, Humans*

- a fused mandibular symphysis
- the region behind the orbit is enclosed within the skull (post orbital bar/closure)
- an increased emphasis on vision and reduced reliance on smell
Anthropoids.....

Platyrrhines: NW Monkeys
- 2:1:3:3

Cattarrhines: OW Monkey, Apes, Humans
- 2:1:2:3
- a bony ear tube
Hominoids share the following derived characteristics
- lack of a tail
- broad palates and nasal regions
Primate Limbs

Hands and feet possess grasping ability.

Features of the hands and feet:

- 5 digits on hand and feet
- Opposable thumb
- Partially opposable great toe
- Tactile pads enriched with sensory nerve fibers at the ends of digits
Primate Limbs

Many monkeys are able to grasp objects with an opposable thumb, while others have very reduced thumbs.
 Humans are capable of a “precision grip.”
Lab Exercises

- Zoo Project handout
 - Lets Check it out
 - I need to sign this before you go

- Lab Primate handout
 - Lab 10.1, 10.2, 10.3
 - Self Test 10.1